演讲MP3+双语文稿:一种用微型蛋白质定制而成的新型药物
教程:TED音频  浏览:165  
  • 00:00/00:00
  • 提示:点击文章中的单词,就可以看到词义解释

    听力课堂TED音频栏目主要包括TED演讲的音频MP3及中英双语文稿,供各位英语爱好者学习使用。本文主要内容为演讲MP3+双语文稿:一种用微型蛋白质定制而成的新型药物,希望你会喜欢!

    【演讲者及介绍】Christopher Bahi

    TED的研究员Christopher Bahl使用计算蛋白质设计——在计算机的帮助下建立自然界中从未见过的蛋白质——来开发用于对抗传染病的新药。

    【演讲主题】一种用微型蛋白质定制而成的新型药物

    A new type of medicine, custom-made with tiny proteins

    【中英文字幕】

    翻译者 Archi Xiao 校对者Wanting Zhong

    00:19

    I'm a protein designer. And I'd like to discuss a new type of medicine. It's made from a molecule called a constrained peptide.

    我是一名蛋白质设计师。 我想跟大家谈谈一种新型药物。 它是由一种名为限制性肽的分子构成的。

    00:30

    There are only a few constrained peptide drugs available today, but there are a lot that will hit the market in the coming decade. Let's explore what these new medicines are made of, how they're different and what's causing this incoming tidal wave of new and exciting medicines.

    现在市面上只有少量限制性肽药物, 但是在未来的十年里,有许多的药物投放市场。 我们来看看这些新药是由什么做的, 她们是如何不同的, 是什么导致了这股新的、令人兴奋的药物浪潮的到来。

    00:44

    Constrained peptides are very small proteins. They've got extra chemical bonds that constrain the shape of the molecule, and this makes them incredibly stable as well as highly potent. They're naturally occurring, our bodies actually produce a few of these that help us to combat bacterial, fungal and viral infections. And animals like snakes and scorpions use constrained peptides in their venom.

    限制性肽是一种很小的蛋白质。 它们有额外的化学键限制分子的形状,这使得它们既稳定又高效。 它们是自然发生的, 我们的身体实际上产生了一些物质能帮助我们对抗细菌、真菌和病毒感染。像蛇和蝎子这样的动物, 它们的毒液里也含有限制性肽。

    01:06

    Drugs that are made of protein are called biologic drugs. So this includes constrained peptides, as well as medicines like insulin or antibody drugs like Humira or Enbrel. And in general, biologics are great, because they avoid several ways that drugs can cause side effects.

    由蛋白质制成的药物被称为生物药物。 其中包括限制性肽,还有胰岛素之类的药物,或者像 Humira 或 Enbrel这样的抗体药物。 总的来说,生物药品很好, 因为它们能避免了药物引发的副作用的几种方式。

    01:25

    First, protein. It's a totally natural, nontoxic material in our bodies. Our cells produce tens of thousands of different proteins, and basically, all of our food has protein in it. And second, sometimes drugs interact with molecules in your body that you don't want them to. Compared to small molecule drugs, and by this I mean regular drugs, like aspirin, biologics are quite large.

    首先是蛋白质。 它是我们体内纯天然、 无毒性的物质。 我们的细胞能合成成千上万种不同的蛋白质, 我们所有的食物基本都含有蛋白质。 第二,有时候药物会跟你体内的分子相互反应, 而你不希望它们发生作用。 与小分子药物相比,这里我指的是普通药物,比如阿司匹林,生物制剂相当大。

    01:47

    Molecules interact when they adopt shapes that fit together perfectly. Much like a lock and key. Well, a larger key has more grooves, so it's more likely to fit into a single lock. But most biologics also have a flaw. They're fragile. So they're usually administered by injection, because our stomach acid would destroy the medicine if we tried to swallow it.

    当分子采用完美地结合在一起的形状时, 它们便会相互作用。 就像一把锁和钥匙。 更大的钥匙有更多的沟槽,所以它更有可能装进一把锁里。 但大多数生物药品都有一个缺陷。它们很脆弱, 所以通常是通过注射给药, 因为如果当我们试图口服的时候, 胃酸可能会让药物失效。

    02:08

    Constrained peptides are the opposite. They're really durable, like regular drugs. So it's possible to administer them using pills, inhalers, ointments. This is what makes constrained peptides so desirable for drug development. They combine some of the best features of small-molecule and biologic drugs into one. But unfortunately, it's incredibly difficult to reengineer the constrained peptides that we find in nature to become new drugs.

    限制性肽则相反。 它们跟常规药一样很耐久。 所以可以用药丸、气雾剂、药膏给他们服用。 这正是限制性肽在药物开发中备受青睐的原因。 它们把小分子药和生物药品最好的一些特征合为一体。 但不幸的是,要想重组我们在自然界中发现的限制性肽, 将其制成新药非常困难的。

    02:34

    So this is where I come in. Creating a new drug is a lot like crafting a key to fit a particular lock. We need to get the shape just right. But if we change the shape of a constrained peptide by too much, those extra chemical bonds are unable to form and the whole molecule falls apart. So we needed to figure out how to gain control over their shape.

    所以这就是我研究的领域。 创造一种新型药物就好像制作一把钥匙来装上一个特别的锁。 我们得把形状弄得恰到好处。 但是如果我们过多改变 限制性肽的形状, 那些额外的化学键便无法形成,整个分子结构也会随之瓦解。 因此我们得需要弄清楚如何控制好它们的形状。

    02:54

    I was part of a collaborative scientific effort that spanned a dozen institutions across three continents that came together and solved this problem. We took a radically different approach from previous efforts. Instead of making changes to the constrained peptides that we find in nature, we figured out how to build new ones totally from scratch. To help us do this, we developed freely available open-source peptide-design software that anyone can use to do this, too.

    我参与了一项跨越十几个结构、跨越三大洲、共同解决这一问题是科学合作。我们采取了与以前的努力截然不同的做法。 我们并没有选择改变天然的限制性肽, 而是发现了如何从头开始制造全新的限制性肽。 为了达到目标, 我们开发了免费的开放源码钛设计软件,任何人都可以使用。

    03:19

    To test our method out, we generated a series of constrained peptides that have a wide variety of different shapes. Many of these had never been seen in nature before. Then we went into the laboratory and produced these peptides. Next, we determined their molecular structures, using experiments. When we compared our designed models with the real molecular structures, we found that our software can position individual atoms with an accuracy that's at the limit of what's possible to measure. Three years ago, this couldn't be done. But today, we have the ability to create designer peptides with shapes that are custom-tailored for drug development.

    为了测试我们的方法, 我们生成了一系列具有多种不同形状的限制性肽。 其中很多从未在自然界中出现过。 接着我们到实验室制造这些限制性肽。 接下来,我们用实验确定了它们的分子结构。 当我们将自己所设计的模型跟真实的分子结构进行比较时, 我们发现该软件可以精确地定位单个原子,其精确度处于可测量的极限。 这在三年前是不可能办到的。 但是今天,我们拥有制造设计肽的能力, 能为药物开发定制 (限制肽的)形状。

    03:54

    So where is this technology taking us? Well, recently, my colleagues and I designed constrained peptides that neutralize influenza virus, protect against botulism poisoning and block cancer cells from growing. Some of these new drugs have been tested in preclinical trials with laboratory animals. And so far, they're all safe and highly effective.

    那么这项技术将 引导我们前往何方? 最近, 我和同事们设计出了抑制肽,可以中和流感病毒、 防止肉毒杆菌中毒、 阻止癌细胞增长。 其中一些新型药物已经在实验室里用动物进行了临床前试验。 目前来看,它们都很安全, 且非常高效。

    04:18

    Constrained peptide design is a cutting-edge technology, and the drug development pipeline is slow and cautious. So we're still three to five years out from human trials. But during that time, more constrained peptide drugs are going to be entering the drug development pipeline. And ultimately, I believe that designed peptide drugs are going to enable us all to break free from the constraints of our diseases.

    限制性肽设计是一项前沿技术,同时药物开发的进程漫长而谨慎。 因此我们还需三到五年才能开始人体试验。 但与此同时,有更多的限制性肽药物将进入药物开发进程中。 最终,我相信限制性肽药物将让我们从疾病的枷锁中得到彻底的解放。

    04:40

    Thank you.

    谢谢大家。

    04:41

    (Applause)

    (掌声)

    0/0
      上一篇:演讲MP3+双语文稿:博物馆应该尊重日常生活,而不仅仅是尊重不平凡的人 下一篇:演讲MP3+双语文稿:我是如何帮助大家了解白癜风的

      本周热门

      受欢迎的教程